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ANALOG OF THE SHALLOW-WATER VORTEX EQUATION FOR HOLLOW AND TORNADO-LIKE 

VORTICES. 

HEIGHT OF A STEADY TORNADO-LIKE VORTEX 

V. V. Nikulin UDC 532 .5  

The analog of the shallow-water vortex equation for hollow and tornado-like vortices 
is obtained in the long-wave approximation for an inviscid, incompressible, and nonuniform 
fluid. A steady, vertical tornado-like vortex is examined, whose central fluid is lighter 
than that outside the center. A sharp criterion is obtained, which distinguishes the case 
where the flow is bounded or unbounded in height. Calculation of the vortex height accord- 
ing to theoretical formula agrees in order of magnitude with the results of laboratory mea- 
surements and observations of naturally occurring dust devils. 

i. Let us consider an incompressible, inviscid, nonuniform fluid in a gravitational 
field. The flow is assumed to be rotationally symmetric. We introduce a cylindrical coordi- 
nate system (r, ~, z), where r is the radius, and ~ is the aximuthal angle. The z axis is 
directed opposite the force of gravity. The flow is divided into two regions in space: in 
region I, r E r0(z, t); in region II, r0(z , t) ~ r E r,. Here r, is a constant, r0 is in 
general a function of z and t, and t is the time. At the boundary r0, there can be a discon- 
tinuity in density and the component of velocity tangential to this boundary. The velocity 
components corresponding to (r, ~ , z) are denoted by (u, v, w), and p, p, g are the pressure, 
density, and acceleration of gravity, respectively. 

In order to change over to the long-wave approximation, subsequently we introduce char- 
acteristic length, velocity, and density scales. As the unit of length, we adopt the char- 
acteristic scale of change along the z axis and for unit velocity, the magnitude of the rota- 
tional component for r = r0, z = 0, t = 0. The characteristic density is set equal to i. 
Then the characteristic time, pressure, and acceleration are equal to I. The characteristic 
scale for change along the r axis is denoted by 6. It is assumed that 6 << i. 
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Transformation to new variables and functions is accomplished by the use of 

r e ~ 6~1, z ~ z, t -)-  t, 2ur  --~ 62q, 

vr - -~  S A ,  w--+ w, p - , p ,  p - - ~  p ,  g--+ g.  

The value r = r0 corresponds to ~ = q0(z, t), r = r, -- q = n,. 

The equations of motion and continuity become 

p62 [ 0q 0q q2 0q ) pA 2 0p 
T \ - g i - + q - ~ - - F n  + w - ~  -- n =--2~1~-~-, 

aA aA aA 
o--i + q-g-~ + w-~z = O, 

( a~) op om aw 
P ~ y + q g ~ + w T z  = - - F z - - P g ,  

Oq Ow Op op Op o~+ ~=0, 57+qN +w~=0- 

(1.1) 

The following is adopted as a boundary condition: 

q = A = 0 for ~ = 0. (1.2) 

It is assumed that the pressure is continuous at the boundary of the region n = ~0, and 
that the kinetic condition is satisfied there: 

q = O~o/Ot @ WOqo/OZ. ( l .  3 )  

For  q = q ,  t h e  i m p e n e t r a b i l i t y  c o n d i t i o n  i s  s a t i s f i e d  

q = 0 f o r q  = ~, .  ( 1 . 4 )  

F u r t h e r m o r e ,  t e r m s  in  ( 1 . 1 )  which  a r e  m u l t i p l i e d  by 6 2 a r e  assumed t o  be n e g l i g i b l y  
s m a l l ,  and t h e  s y s t e m  i s  t r a n s f o r m e d  by a method  a n a l o g o u s  t o  t h a t  p r o p o s e d  in  v o r t e x  t h e o r y  
f o r  s h a l l o w  w a t e r  [ 1 ] .  The t r a n s f o r m a t i o n  o f  t h e  e q u a t i o n s  i s  c a r r i e d  o u t  s e p a r a t e l y  f o r  
r e g i o n s  I and I I .  

We i n t r o d u c e  new i n d e p e n d e n t  v a r i a b l e s  z ' ,  t ' ,  ~ (0 ~ v ~ 1 ) ,  a c c o r d i n g  t o  z = z ' ,  t = 
t ' ,  n = R ( z ' ,  t ' ,  ~ ) .  Here  R s a t i s f i e s  

OR~Of ~ wOR/Oz' = q ( 1 . 5 )  

and boundary conditions 

R ( z ' ,  t ' ,  O ) =  O, B(z '~  t ' ,  1 ) =  Bo ( 1 . 6 )  

for the equations in region I and 

B ( z ' , t ' ,  0 ) = ~ , ,  R(z ' ,  t ' ,  1) = %  ( 1 . 7 )  

in region II. It is easy to see that the boundary conditions (1.2) (for q), (1.3), and 
(1.4) are automatically satisfied for this definition of R. In this case, the unknown 

boundary n = no is transformed into the known value of v = i. 

For the differential operators we can write 

OR 0 OR 0 OR 0 OR 0 0 
Ov Oz = Ov Oz' Oz' 0~' ~ ~ = O-V ' 

OR 0 OR 0 OR 0 
Ov Ot Ov Or' or' Or" 

Using  t h e s e  r e l a t i o n s  and ( 1 . 5 ) ,  t h e  t o t a l  d e r i v a t i v e  o p e r a t o r  8 / 8 t  + qS/Sn + wS/Sz t r a n s -  
fo rms  to 8/8t' + wS/Sz' Then in the variables t' ' , z , 9, system (i.i) takes the form (in 

the future, the prime on t' and z' will be omitted) 
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9A eOR_~_Op OA wOA 
2R" ov W' ~ + - d ; =  O' " 

on ( o~ o~) oR op oR o, oR 
. . . . . . .  p g-g-~ , 

p ~ -  ~ f  + w ~ -  ov oz + ov ov 

OR Ow OR Ou, 09 oq + = O, + w = O. 
O--"v Ov Oz Oz Ov ~t 

( 1 . s )  

It follows from (1.8) that if A = a(v), 0 = p(v) at t = 0, then 

A = ~( , ) ,  p = p( , )  ( 1 . 9 )  

for any t. Henceforth we will assume that (1.9) is satisfied. 

An expression is obtained for p by using (1.9) and integrating the first equation in 
(1.8) from v to i. This result is substituted into the third equation in (1.8). With the 
help of (1.5), we eliminate q from the fourth equation and obtain a system of two equations: 

1 

P 8r + w ~ - - -  o-~- 2R-~ o-7 + ~ - ~  2a ov 
, (i.i0) 

o (aR) a /  oR'~ 
on ~ + ~ w ~ ] = ~  

Here p,, Pl, ai, and R I are values corresponding to u = i (values at the boundary between regions 
I and II). Note that the equations have the same form (i.i0) in regions I and II. The val- 
ues of Pz and a z can be different, since jumps in density and the velocity component tangen- 
tial to the boundary are admissible when crossing the boundary. The values of Pz and R z are 
the same in regions I and II, because of pressure continuity and the definition of R. We 
find the equations for hollow and tornado-like vortices from (i.i0). 

Hollow Vortex. We assume that there is no fluid in region I, and the pressure is con- 
stant and equal to zero. Then the surface ~ = I is free and Pl = 0 in region II. This means 
that the equations for a hollow vortex have the form (I.i0) with Pl set equal to zero. 

Tornado-like Vortex. We introduce another small parameter e = l/n,, whose physical 
meaning is the ratio of the radii of regions I and II squared. The order of smallness of E 
is not arbitrary. To discard terms which remain small, it follows from (i.i) that the in- 
equality 6 2 << e must be satisfied. 

We seek the solution to (i.]0) as an expansion in terms of the small parameter e. In 
region I 

B = B  ~  .... w = w  ~  ~ + . . . ,  p ~ = ~ ~  

In region II, we seek the solution in a special form: 

B = ( l - - ~ ) / ~ + B  ~  1 +  .... w = w ~  a = p =  1, 

Pz i s  as  i n  r e g i o n  I ,  due t o  t h e  b o u n d a r y  c o n d i t i o n s .  

I n  a c c o r d a n c e  w i t h  ( 1 . 6 ) ,  ( 1 . 7 ) ,  we mus t  s e t  R i = 0 ( i  = 0,  1, 2 . . . .  ) f o r  u = 0. 

The solution in region II is a good approximation to real flow in tornado-like vortices 
outside the vortex core, as observed in both laboratory experiments [2, 3] and in nature [4]. 

We substitute the expansion into (i.i0), keeping terms of zeroth order in ~. In region 
II, we obtain the equation 

Or~~ 1 OR~ 
o, + 2 (R~) ~ 0 ~  g = o. 

As already noted, n ~ and Rz ~ are the same in regions I and ii. Then we can express n ~ using 
the last relation, and substitute this into the equations for region I. As a result, we have 
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-gT + w - - ~ ; )  = + dv + ( t  --p)g, - 2(RO) ~ Oz "~- 2Ro Ov 

o--7 + ' - ~ -  w~ = 0 .  av / 

(i.il) 

Using p, = 0 and (i.ii), it follows from (i.i0) that if 8(pa2)/an = 0, then this syst~n 
is equivalent to the equations of a shallow-water vortex with constant density [I]. In this 
case, the hyperbolic nature of these systems is established in analogy to [i] by means of 
the appropriate change of notation, 

2. The method developed is now applied to a more specific flow. A steady tornado-like 
vortex is examined. Let us study the flow in region I, which henceforth is called the core 
of the vortex. It is assumed that w = 0 in region II. In this case, system (I.i0) leads to 
the form (i.ii) directly for R and w without expansion in terms of e. Thus, we examine 

(i.ii) without the null superscript. 

As boundary conditions, the values of w and R are prescribed at z = 0. We assume that 
w = w0(v) , R = v at z = 0. The fundamental result of separation is formulated as 

Let a = 0, p = const < i, w 0 ~ ~ > 0, 7 is a constant, and let the flow be THEOREM. 
steady, and 

1 

i !d!v 
= 4 " 

Then, if X < i, the solution exists for all z > 0, v e [01], and R + 0, w + ~ monotonically 
for every fixed value of v as z § ~. If X > i, then the solution exists only for z 5 s 

where s is defined by 

2( -P)glP pi I=-- t 0 t / w g -  ~2 j 

w h e r e  t h e  q u a n t i t y  w f o r  z = 1 a p p r o a c h e s  z e r o  f o r  v ,  a s  g i v e n  by  t h e  e q u a t i o n  w0(~)  = V- 

P r o o f .  We i n t e g r a t e  ( 1 . 1 1 )  o n c e  o v e r  z .  By ~ we d e n o t e  t h e  q u a n t i t y  ~ = w 2 - w0 2.  

We o b t a i n  

1 2 (t  - -  p) 1 
9 oR~ ------G-- gz  - -  --5-' 

' v  

~o dv qj)li* 
(2.1) 

From the first equation it follows that ~ = q (z). Thus to obtain the dependence of R and 
w on z, it is necessary to investigate the implicit relation ~ (z), which is given by the 

first equation in (2.1). 

We denote f(~) = ~ - I/(pRI). By differentiation we establish the relations f'(0) = 

1 - X, 

3 wodv 
- 3 2 

In the calculation, it is assumed that q = 0, Ri = I for z = 0. Using the Bunyakovskii in- 
equality and the expression for Ri from the second equation in (2.1), we can write 
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[# w~ ~ i w~ 
R' oJ 7u 

From the latter inequality and the expression for f"(~) it follows that f"(~) > 0 for q > 
__y2. 

Let X < i. Then it follows from the expression for f'(0) that f'(0) > 0. From this 
and from the fact that f"(~0) is positive, we have that f'(~) > 0. From (2.1) we obtain dr/ 
dz > 0. Since df/dz = (df/dq0)(d~/dz), and, as already proved, f'(~) > 0, then d@/dz > 0. 
Thus, ~ is a monotonically increasing function of z, and according to (2.!),~ % a, for z 
~. Then we find from (2. I) that w + ~, R + 0 monotonically as z + ~ for every fixed value 
of ~). 

Let I > I. Then f'(0) < 0. This case is analogous to the previous one, and we find 
that d~/dz < 0. Thus, ~ is a monotonically decaying function. For ~ < -72 , the solution 
does not exist, since the expression under the radical in (2.1) becomes negative. Substi- 
tuting @ = -72 into (2.1) gives the limiting value z = s for which the solution exists. 
From (2.1) it also follows that for z = s w(9) vanishes for those v which satisfy w0(v) = y. 

3. We now apply these results to the calculation of the height of real tornado-like 
vortices with a warm core. Dust devils [4-6] are studied as an example of natural vortices, 
and experimental models [3, 7] as examples of laboratory vortices. The application of the 
model of a tornado-like vortex to describe real flows is based on the qualitative conver- 
gence of model and real flows, and also the fact that the outer boundary ~, does not influ- 
ence the structure of (i.ii). 

From dust devil observations, it has been established that their cores, which are usu- 
ally clearly visible due to the dust, rapidly lose their visibility at some height, becom- 
ing invisible. Frequently, before the region of disappearance, the vortex core is signifi- 
cantly thickened [5]. It has been shown in experiments [3, 7] that the vortex core radically 
changes its structure at some height, and is transformed into a convective nonrotating ther- 
mal, whose radius rapidly increases. Thus, the vortex flow being considered can change radi- 
cally at a given height and can change over to another structure. 

Vortices which are shed from an airplane wing were studied in [8]. We will assmne, in 
accordance with [8], that the height of the vortex s is equal to the limiting value of z up 
to which there exists a solution in the approximation considered here. As follows from the 
theorem, for this value of z, the vertical velocity vanishes for at least one point inside 
the core. In this way, the given assumption is analogous to the assumption that is made in 
boundary layer theory for the definition of the point of separation. 

Calculations of vortex height were done using the model formulas and were compared with 
experimental data [3, 7], and with observations of dust devils as well. Subsequently all 
quantities and calculations are taken in dimensional form. 

The upper boundary of the near-earth boundary layer (or, in the notation of [2], the 
lower boundary of region IV) is located in the plane z = 0. According to [2], the vertical 
velocity profile is nearly a step function. Therefore, we set w 0 = const (w 0 is the dimen- 
sional vertical velocity in the vortex core at z = 0). The densities of the fluid in and 
outside the core are denoted by p and P0, respectively, and p < P0. The magnitude of the 
rotational component of the velocity at the edge of the core at z = 0 is denoted by v 0. 
Then the condition that the vortex height I > 1 be bounded and the expression for s take on 
the forms 

po--~o < I, z = 2 (0~ - 0) g ~ ~o 2 " 

From these relations it follows that s depends weakly on Wo, and therefore in terms of order 
of magnitude, we write 

For (go - P)/Po, the estimate (Po - P)/Po z (T - To)/To is valid, if (T - To) << T G (T is the 
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mean temperature in the core, and T0 is the temperature of the surrounding air). Then we 
obtain 

! ~ v~To/(2g (T - -  To) ). 

We s e t  v0 = 100 c m / s e c ,  wo = 43 c m / s e c ,  T - To = 20 K, To = 300 K [ 7 ] .  The  v a l u e  o f  
v0 i s  c o m p u t e d  f r o m  t h e  c o n d i t i o n  o f  c o n s e r v a t i o n  o f  c i r c u l a t i o n  o f  t h e  v e l o c i t y  a b o u t  t h e  
c o r e  i n  t h e  o u t e r  r e g i o n ,  a n d  s o  2 w 0 2 / v 0 2  < l ,  t h a t  i s ,  ~ > 1,  s ~ 85 cm. A c c o r d i n g  t o  m e a -  
s u r e m e n t s  in [7], s = 45 cm. 

Setting v 0 = 40 cm/sec, T - To = 10 K, T0 = 300 K [3], we obtain s = 24 cm. According 
to [3], s = 60 cm. 

For dust devils we take v 0 = I0 m/sec, T - To = 2 K, To = 300 K [4], for which s z 
750 m. The height of the vortex is approximately 600 m in the photograph shown in [5]. 

Thus, the theoretical results are qualitatively supported by observational data. Quan- 
titative calculation of vortex height using the model formulas agrees in order of magnitude 
with the results of laboratory measurements and observations of naturally occurring dust 
devils. 
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